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1. Introduction

1.1 Motivations

The US Army Research Laboratory (ARL) is developing an acoustic system to de-
tect and localize launch points and impact points of different kinds of weapons in
the field. Proper identification of the detected events would filter out the informa-
tion, increase situational awareness, and allow the Soldier to take appropriate action.
For example, it can provide a warning for incoming threats, or can cue a radar or a

high-resolution camera.

Experimental work over the last decade on classification of acoustic signatures col-
lected from ARL acoustic arrays suggests that the classifier can perform satisfac-
torily in environments on which it has been trained. However, it has difficulty gen-
eralizing to different environments. Yet, due to practical limitation and cost, the
collected data cannot cover all possible atmospheric conditions, terrain geometries,
and source-sensor ranges. This report examines this issue using a variety of classi-
fiers and setups. It takes one attempt at quantifying the effect of propagation chan-
nels. It also points to other research directions that are believed to be able to get

around this fundamental limitation.

1.2 Sparsity-Based Representation for Transient Acoustic Signals

For the last decade, sparse signal representations have proven to be extremely pow-
erful tools in solving many inverse problems, where sparsity acts as a strong prior
to alleviate the ill-posed nature of the problem. Recent research has pointed out that
sparse representation is also useful for discriminative applications.'™ These appli-
cations rely on the crucial observation that test samples in the same class usually
lie in a low-dimensional subspace of some proper bases or dictionaries. Thus, if
the dictionary is constructed from all the training samples in all the classes, the
test samples can be sparsely represented by only a few columns of this dictio-
nary. Therefore, the sparse coefficient vector, which is recovered efficiently via ¢;-
minimization techniques, can naturally be considered as the discriminative factor.
In Wright et al.,? the authors successfully applied this idea to the face recognition
problem. Since then, many more sophisticated techniques have been exploited and
applied to various fields, such as hyperspectral target detection,* chemical plume

detection and classification,’ and visual classification.!’
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Nowadays, many real-world problems involve simultaneous representations of mul-
tiple correlated signals. These applications normally face the scenario where data
sampling is performed simultaneously from multiple colocated sources (such as
multiple channels or sensors) — yet within a small spatio-temporal neighborhood,
recording the same physical event. This data collection scenario allows exploita-
tion of correlated features within the signal sources to improve the resulting signal
representation and guide successful decision making. Joint sparsity models, which
assume the fact that multiple measurements belonging to the same class can be
simultaneously sparsely represented by a few common training samples in the dic-
tionaries, have been successfully applied in many applications. For instance, a joint
sparse representation (JSR)-based method is proposed in Chen et al.® for target
detection in hyperspectral imagery. The model exploits the fact that the sparse rep-
resentations of hyperspectral pixels in a small neighborhood tend to share common
sparsity patterns. Yuan and Yan’ investigated a multitask model for visual classifi-
cation, which also assumes that multiple observations from the same class could be
simultaneously represented by a few columns of the training dictionary. Similarly,
Nguyen et al.” investigated a multi-sensor classification framework via a multivari-
ate sparse representation that forces different recording sensors to share the same

sparse support distributions on their coefficient vectors.

In this report, we first develop a JSR model which imposes row-sparsity constraints
across multiple acoustic sensors to collaboratively classify transient acoustic sig-
nals. Furthermore, we robustify our models to deal with the presence of large and
dense but correlated signal-interference/noise (namely low-rank interference). This
scenario is normally observed when the recorded data are the superimpositions of
target signals with interferences, which can be signals from external sources, ef-
fects of propagation channel on multiple sensors, the underlying background that is
inherently anchored in the data, or any pattern noise that remains stationary during
signal collection. These interferences normally have correlated structure and ap-
pear as a low-rank signal interference since the sensors are spatially co-located and
data samples are temporally recorded, thus any interference from external sources
will affect similarly on all the multiple sensor measurements. Another extension of
our sparsity-based representation models is the incorporation of group-structured-
sparsity constraints among observations of multiple sensors. The group-sparse con-
straint is concurrently enforced with row-sparse constraints among the support co-

efficients of all sensors, thus yielding one more layer of classification robustness.
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1.3 Contributions

The main contributions of this technical report are as follows:

e We develop a variety of novel sparsity-regularized regression methods that
effectively incorporate simultaneous structured-sparsity constraints, demon-
strated via a row-sparse and/or group-sparse coefficient matrix, across multi-
ple acoustic sensors. We also robustify our models to deal with the presence
of a large but low-rank interference term. While row-sparsity constraint in the
JSR model has been extensively studied and applied in many application dis-
ciplines, the models with the incorporation of low-rank interference as well
as the integration of both joint- and group-sparsity structure are our own de-
velopments. Preliminary classification results of these methods for a subset of
ARL acoustic transients data set were presented as parts of our paper, which

will soon be published in IEEE Transactions on Signal Processing.'’

e We report comprehensive comparisons of the classification performance for
12 different classifiers, including 6 conventional classifiers previously devel-
oped and examined in ARL, 4 newly developed sparsity-based representation

models, and 2 emerging deep learning architecture techniques.

e The classification performance of all competing methods is examined on a
variety of experimental setups. Two broad sets of classification problems are
conducted: a 4-class problem (launch and impact of 2 projectiles) and a 6-
class problem (launch and impact of 3 projectiles). Furthermore, classifica-
tion accuracy is evaluated for different partitioning of training and testing
sets, effectively showing the performance degradation due to the propagation
of the signals through the environment. In addition, classification rates are
summarized and analyzed for both weighted and non-weighted classification
results. Experimental setups and empirical results are discussed and analyzed

in detail in Section 4 of the report.

1.4 Notations and Outline

The following notational conventions are used throughout this report. We denote
vectors by boldface lowercase letters, such as z, and denote matrices by boldface
uppercase letters, such as X. For a matrix X, X ; represents the element at row
i and column jth of X while a bold lowercase letter with subscript, such as z;,
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represents its j column. The /,-norm of a vector £ € R” is defined as ||:I:||q =
(2N, |2i]7)Y/ where ; is the 7 element of z. Given a matrix X € RV*M || X,
| X1l ,» and [|X |, are used to defined its Frobenious norm, mixed ¢; ,-norm and

nuclear-norm, respectively.

The remainder of this report is organized as follows. In Section 2, we give a brief
overview of sparse representation for classification. Section 3 introduces various
proposed sparsity models based on different assumptions on the structures of coef-
ficient vectors and low-rank noise/interference. A fast and efficient algorithm based
on the alternating direction method of multipliers (ADMM)!! to solve the convex
optimization problems that arise from these models and the guarantee of conver-
gence to the optimal solutions are also outlined in this Section. Extensive experi-
ments are conducted in Section 4, and conclusions and future works are drawn in

Section 5.

2. Background Reviews

2.1 Sparse Representation for Classification

Recent years have witnessed the development of sparse representation techniques
for both signal recovery and classification. In classification, in order to let the prob-
lem work, one often assumes that all of the samples that belong to the same class
lie approximately in the same low-dimensional subspace.? Suppose we are given a
dictionary representing C' distinct classes D = [D1, D»,...,Dc] € RY*F, where
N is the feature dimension of each sample, and the c-th class subdictionary D, has
P, training samples {d.,},—1 . p., resulting in a total of P = Zle P, samples in
the dictionary D. To label a test sample y € RY, it is often assumed that y can be
represented by a subset of the training samples in D. Mathematically, y is written

as
a
as
y = [D1,D,, ..., D¢| ) +n=Da+n, (1)

ac

where a € R’ is the unknown coefficient vector, and n is the low-energy noise
due to the imperfection of the test sample and has little effect on the classification
decision. For simplicity, the presence of n will be discarded from all model descrip-
tions, though it is still taken into consideration by the fidelity constraint (a penalty
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term with Frobenious norm) in the optimization process.

The sparsity assumption implies that only a few coefficients of a are nonzero and
most of the others are insignificant. Particularly, only entries of a that are associ-
ated with the class of the test sample y are nonzero, and thus, a is a sparse vector.
Taking this prior into account, many methods have been proposed to find the coef-
ficient vector a efficiently, including ¢;-norm minimization,'? greedy pursuit (e.g.,
CoSaMP"? or subspace pursuit'*), and iterative hard threshold,'® to name a few. In

this report, we favor the ¢;-minimization approach, which is described as follows:

min |al,
2)
s.t. y = Da.

Once the coefficient vector a is obtained from Eq. 2, the next step is to assign the
test sample y to a class label. This can be determined by simply taking the minimal

residual between y and its approximation from each class subdictionary:

Class(y) = argmin |ly — D.a.||, , )
where a, is the induced vector by keeping only the coefficients corresponding to
the c-th class in a. This step can be interpreted as assigning the class label of y to
the class that can best represent y. In the case a tested signal is the superposition
of 2 or more classes, the class assignment step can be modified from Eq. 3 by
considering if the residual between y and the closest representation with respect to

2 class subdictionaries is smaller than a certain threshold.

2.2 Joint Sparse Representation

Single-measurement sparse representation has been shown to be efficient for clas-
sification tasks because it provides an effective way to approximate the test sample
from the training examples. However, in many practical applications, we are often
given a set of test measurements collected from different observations of the same
physical event. An obvious question is how to simultaneously exploit the informa-
tion from various sources to come up with a more precise classification decision,
rather than classifying each test sample independently and then assigning a class

label via a simple fusion (e.g., a voting scheme). An active line of research recently
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focuses on answering this question using JSR.!®! Mathematically, given an unla-
beled set of M test samples Y = [y1,9y,...,yn]| € RY*M from different nearby
spatio-temporal observations, we again assume that each measurement y,,, can be

compactly represented by a few atoms in the training dictionary
Y = [y1,y2,...,yn] = [Day, Das,, ..., Day| = DA, 4)

where A = [ay,as, ...,ay] € RP*M is the unknown coefficient matrix. In the joint
sparsity model, the sparse coefficient vectors {a,, }}_, share the same support ',
and thus the matrix A is a row-sparse matrix with only |I'| nonzero rows. This model
is the extension of the aforementioned sparse representation for classification model
to multiple observations and has been shown to enjoy better classification in various

7,16,17

practical applications as well as being able to reduce the sample size needed

18,20

for signal reconstruction applications when the row-sparsity assumption holds.

To recover the row-sparse matrix A, the following joint sparse optimization is pro-

posed:
min || Ally
’q
4 ®)
st. 'Y =DA,
where the norm [|A|, , with ¢ > 1, defined as [|A][, , = S @[, with a;’s
being rows of the matrix A, encourages shared sparsity patterns across multiple
sensors. This norm can be phrased as performing an {,-norm across the rows to
enforce “joint” property and followed by an ¢;-norm along the columns to enforce
“sparsity”. It is clear that this ¢, , regularization norm encourages shared sparsity
patterns across related observations, and thus the solution of the optimization in Eq.

5 has common support at column level.

3. Robust Structural Sparsity-Based Representation for
Classification of Transient Acoustic Signals

3.1 Joint Sparsity Model for Classification of Acoustic Transients

In this section, we discuss a general JSR framework for the classification of tran-
sient acoustic signals. In this application, the acoustic data are collected during the
launch and impact of different types of munitions using a tetrahedral acoustic sen-
sor array, hence there are 4 measurements for each data sample (i.e., M = 4).

A feature vector (e.g., cepstral features that have been proved effective in speech
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recognition and acoustic signal classification) is then extracted from each measure-
ment and concatenated into a matrix Y, as shown in Fig. 1. Since the 4 sensors
simultaneously measure the same event, the coefficient matrix A in the linear rep-
resentation of training samples in the dictionary D = [Dy, D, ..., D] should have
common sparse supports. In other words, A should be row-sparse. After a joint spar-
sity optimization is engaged in Y, its class label is then determined by the following

minimal residual rule:

Class(Y) = argmin ‘
e,

c=1

Al | (6)
F

where ||-|| - is the Frobenious norm of a matrix; D, and A, are the submatrices from
class c-th of the training dictionary D and the coefficient matrix A solved by Eq. 5,
respectively. This step can be interpreted as collaboratively assigning the class label

of Y to the class that can best represent all samples in Y.

=

Acoustic

Sensor 1
Features

1
0|
1
1
Sensor 2 +-"‘ li M |:'|>
1
1
0|
1
1
0|
1

Acoustic
Features

Sensor 3

Acoustic

Sensor 4
Features

=
[Feame}
_MME%?SLTRE%
[Feamee ]

Fig. 1 Joint sparsity framework for classification of transient acoustic signals

3.2 Joint Sparse Representation with Low-Rank Interference

In this section, we study a robust joint-sparsity model that is capable of coping with
the dense and large but correlated noise, so-termed low-rank interference. This sce-
nario often happens when there are external sources interfering with the recording
process of all sensors. When the sensors are closely spaced, interference sources
look similar across the sensors, resulting in a large but low-rank corruption. Figure 2
illustrates a typical setup with multiple colocated sensors simultaneously recording
the same physical events. In a multi-model setting, sensor colocation normally en-
sures that interference/noise patterns are very similar, hence justifying the low-rank

assumption. These interference sources may include sound and vibration from a
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car passing by, a helicopter hovering nearby, interference from any radio-frequency
source, or the effect of propagation on the signal (in the cepstral space). Further-
more, in many situations the recorded data may contain not only the signal of inter-
est but also the intrinsic background that normally stays stationary, hence promoting
a low-rank background interference. Our proposed joint sparse representation with
low-rank interference (JSR+L) model is expected to tackle this problem by extract-
ing the low-rank component while collaboratively taking advantage of correlated

information from different sensors.

Unknown
Interference

rrrrrr

wind, rain, car engine etc)
- Radio Freq. Interference
- Background Noise

- Propagation Effects

Sensor 1

Sensor 2

Sensor M-1

Sensor M

Fig. 2 A general multisensor problem with unknown low-rank interference

Mathematically, let Y be the measurement matrix. Under some circumstances, we
are not able to observe the joint sparse representation DA in Y directly; instead,
we observe its corrupted version Y = L + DA. The matrix L captures interference
with the prior knowledge that L is low-rank. To separate L and DA, a strategy
model that simultaneously fits the low-rank approximation on L and a joint sparse

(,,-regularization on the coefficient matrix A is proposed as

min [|4],, + Az 1L, -
st. Y=DA+L,

where the nuclear matrix norm ||L||, is a convex-relaxation version of the rank
defined as the sum of all singular values of the matrix L?'??; and \;, > 0 is a

weighting parameter balancing the 2 regularization terms.

Once the solution {:‘i, E} of Eq. 7 is computed, the class label of Y is decided by
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the minimal residual rule
2

; ®)

Class(Y) = argmin HY — Dcﬁc — Ec
F

c=1,...,C

where D,, A., and L, are the corresponding induced matrices associated with the

c-th class.

3.3 Simultaneous Group-and-joint Sparse Representation with
Low-Rank Interference

JSR+L has the capability to extract correlated noise/interference while simultane-
ously performing intercorrelation of multiple sensors in the coefficient matrix at
row-level, hence boosting the overall classification result. Moreover, this model can
even be strengthened by further incorporating the group sparsity constraint into the
coefficient matrix A. The idea of adding group structure has been intensively stud-
ied?*?* and theoretically as well as empirically proven to better represent signals in
discriminative purposes. Especially, this concept is critically beneficial for classi-
fication tasks where multiple measurements do not necessarily represent the same
signals but rather come from the same set of classes. This leads to group sparse
representation where the dictionary atoms are grouped and the sparse coefficients
are enforced to have only a few active groups at a time, resulting a 2-level sparsity

model: group-sparse and row-sparse in a combined cost function.

We tentatively apply this concept to the JSR+L model. The new model simulta-
neously searches for the group-and-row sparse structure representation among all
sensors and low-rank interference and is termed group-and-joint sparse representa-

tion with low-rank interference (GJSR+L).

)

C
mip WAl 20 3 1A + A LI o

st. Y=DA+L,

where A, is the subcoefficient matrix of A induced by the labeled indexes corre-
sponding to class c; and A > 0 is the weighting parameter of the group constraint.
The optimization in Eq. 9 can be interpreted as follows: the first term || A[|, , encour-
ages row-wise sparsity across all sensors, whereas the group regularizer defined by
the second term tends to minimize the number of active groups in the same coef-

ficient matrix A. The third term penalizes the nuclear norm of the interference as
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discussed in the previous section. In succession, the model enforces A to be both
group-sparse and row-sparse, in parallel with extracting the low-rank interference
appearing in all measurements altogether. Figure 3 shows the visual comparison
of coefficient matrices of joint-sparsity structure and the combined group-and-joint
sparsity model. Once the solutions of the coefficient matrix and low-rank term are

recovered, the class label of Y is decided by the same Eq. 8 as in the JSR+L method.

Class 1 Al
Class?2 A2
ClassC AC’

T o 2 P -

3 2 eo® 3 2 8 oeoo 3

5 5 o T 5 5

[V ] (%] 0 0 (2]

(a) (b)

Fig. 3 a) Coefficient matrix of joint sparsity model and b) coefficient matrix of group-and-joint
sparsity model

3.4 Algorithm

In this section, we provide a fast and efficient algorithm based on the ADMM!! to
solve for the proposed multisensor sparsity-based representation models. GJSR+L
is the most general method; hence, here we discuss the algorithm to solve Eq. 9
and then simplify the algorithm to generate solutions for the other methods. The
augmented Lagrangian function of Eq. 9 is defined as

C
L(ALZ)=|AlL, +Ac)_ lIAdlly+Ac L], (10)

c=1

+<Y—DA—L,Z>+§HY—DA—LH;,

where Z is the Lagrangian multiplier, and p is a positive penalty parameter. The
algorithm, formally presented in Algorithm 1, then minimizes £(A, L, Z) with re-

spect to one variable at a time by keeping others fixed and then updating the vari-
ables sequentially.
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Inputs: Matrices Y and D, weighting parameters Ag and .
Initializations: A =0, Ly, =0, j = 0.
While not converged do
1. Solve for L y: Ljy = argming L(A;, L, Z,)
2.Solve for A 1: Aj = argming L(A, L1, Z;)
3. Update the multiplier: Z; 1 = Z; + (Y — DA; 1y — L;+1)
4.7=7+1
end while
Outputs: (A, L) = (A;,L;).

Algorithm 1. ADMM for GJSR+L

Algorithm 1 involves 2 main subproblems to solve for the intermediate minimiza-
tions with respect to variables L and A at each iteration j, respectively. The first
optimization subproblem that updates variable L can be recast as

2

Ly =arguin L), + 4 £~ (v - D4, - )
L

F
= argmin \; | L], + CIL— Pyl (11

where we define P; = (Y — DA; — iZ ;). The proximal minimization in Eq. 11
can be solved via the singular value thresholding operator?' in which we first define
a singular value decomposition (U, A, V) = svd(Y — P; + %Z ;). The intermediate
solution of L;,; is then determined by applying the soft-thresholding operator to
the singular values: L; ; = USx, (A)V, where the soft-thresholding operator of

A over % is element-wise defined for each ¢ in the diagonal of A as S, (§) =
m

max(]o| — %, 0) sgn(9).
The second subproblem to update A can be rewritten as

2
. (12)

F

C
) 1
Ay = axgmin Al A6 3 AL+ HDA (V= L+ 7))
c=1

This subproblem is a convex utility function. Unfortunately, its closed-form solution
is not easily determined. The difficulties come from not only the joint regulariza-
tion of row-sparse and group-sparse on the variable A, but also the operation over
dictionary transformation DA as well as the engagement of multiple modalities. In

order to tackle these difficulties, we do not solve for an exact solution of Eq. 12.
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Instead, the third term in the objective function is approximated by its Taylor series

expansion at A; (achieved from iteration j) up to the second derivative order

2

1
HDA— Y —Lin+12)| =~ HDAj ~ (Y~ Ly + 7)) (13)

2
F

F

1
+2(A - A;,T;) + 7 |A — Ajll%.,

where 6 is a positive proximal parameter and T'; = DT(DA;— (Y —L;,,+ iZ ;) 1s
the gradient at A; of the expansion. The first component in the right-hand side of Eq.
13 is constant with A. Consequently, by replacing Eq. 13 into the subproblem Eq.
12 and manipulating the last 2 terms of Eq. 13 into one component, the optimization

to update A can be simplified to
- H
. 2
Ajir = argmin 4], + Ao D [Aclp + 35 14— (4~ T (14)
c=1

The derivation in the second line of Eq. 14 is again based on the separable structure
of ||-||% with T'; = [T}, T2, ...,T;]. Note that while |-||3. has element-wise separable
structure promoting both row- and column-separable properties, the norm ||-|| . does
not perform any separable structure and ||- ||1 , has separable structure with respect
torows (i.e., [|[A], , = S IIA 1., Vith A being the row-concatenation matrix of
all A.’s). Applying this row-separable property into the first and third terms of Eq.
14, we can further simplify it to solve for the subcoefficient matrix of each class

separately:
, Iz
(Ajrr)e = argmin [Aclly, + A [Aellp + 55 [ 4e = ((45). = 0Tl (15)
(Ve=1,2,....,C).
The explicit solution of Eq. 15 can then be solved via the following lemma.

Lemma 1: Given a matrix R, the optimal solution to

» 1
min on | X[y, + 02 [ X p + 51X — R (16)
is the matrix X 18]
A —x2 ]
X =) s S FlSle > (17)
0 otherwise,
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where the i-th row of S is given by

||Ri,:||qfa1 .
Si,: - {Tquv l«f HRZ,”q > (18)

0 otherwise.

Furthermore, Algorithm 1 is guaranteed to provide the global optimum of the con-

vex program in Eq. 9 as stated in the following theorem:

Theorem 1: If the proximal parameter 0 satisfies the condition o ,,,((D)'D) <
1
0’
by algorithm 1 for any value of the penalty coefficient . converges to the optimal

solution {;1,2:} of Eq. 9 as j — oc.

where 0.,q,(+) is the largest eigenvalue of a matrix, then {A;,L;} generated

4. Experimental Results

4.1 Data Set Description

In this section, we perform experimental results for a challenging classification of
transient acoustic signals produced by various impulsive sources such as detona-
tions (e.g., launch and impact) of different kinds of weapons collected by ground-
based tetrahedral microphone arrays (hence there are 4 measurements for each data
sample) at separate locations and on different dates and times at the sampling rate
of 1001.6 Hz. This classification is difficult since many factors affect the propaga-
tion of signals from source to sensors. Significant noises and external interfering
signals may also be present in the data jungle. In particular, we note several chal-
lenges: 1) the long distances between receivers and sources; 2) the presence of
obstacles on the terrain and nature of the ground; 3) the various amplitudes of the
sources; 4) the different times of day; and 5) the meteorological conditions (e.g.,
cloud cover, wind, and humidity). Several preliminary classification results have
been reported using well-known conventional classifiers, such as Markov switching
vector auto-regression (MSVAR), Gaussian mixture model (GMM), support vector
machine (SVM), hidden Markov model (HMM), or the combination of SVM and
HMM (so-termed SVM-HMM or SHMM).

The given original data set contains a total of 7,420 acoustic signatures and their
associated metadata. After a clean-up round that exhaustively investigates and com-
pares the true signal contents, it is revealed that there are 2,088 duplicate samples.

Moreover, some of the signatures in the data set are unusable for various reasons,
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such as 1) the recording equipment on some signals only has outputs from one sen-
sors; 2) some data files contain incomplete events or inaccurate information (e.g.,
the starting time of segmentation is even after its ending time); and 3) the ampli-
tudes of certain recorded signals are too small. In total, another 1,188 files will not

be used in our experiments; these files may be fixed and reused in our future works.

The 4,144 cleaned and unique files are reported as acoustic signatures of 9 different
weapons recorded at 19 experiment fields in which the set of fields {02, 03, 06,
11-15} (so termed V1 fields) are categorized as desert vegetation, and fields {01,
04, 05, 07-10, 16-19} (known as V2 fields) are classified as grassland vegetation.
In this report, we classify launches and impacts for 3 weapon types (namely, W1,
W2, and W3), which account for a total of 2,950 samples. The availability of these
data samples allows us to examine the effect of recording environments on the clas-
sification accuracy. The data set used in our experiments is summarized in Table 1,
which shows the distribution of the number of signatures for each location/weapon

type combination.

Table 1 Data set summary

’ Acoustic Data H W1 ‘ w2 ‘ W3 H Total ‘

Launch 1,719 | 106 | 107 | 1,932
Impact 918 36 | 64 | 1,018
| Total | 2,637 | 142 | 171 || 2,950 |

4.2 Comparison Methods

In this report, we compare the classification results of transient acoustic signals

using 12 different methods:

25

MSVAR: Markov switching vector autoregressive.

e GMM: Gaussian mixture model.

SLR: sparse logistic regression.

HMM: hidden Markov model.

SVM: support vector machine classifier (reporting results on the concatenated

feature vector of the 4 sensors).
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¢ SVM-HMM (or SHMM): combined SVM and HMM model where HMM is
first developed to capture the temporal dynamics of time series of transient
acoustic signals, and SVM is then embedded to model the emission probabil-
ities for each HMM. 2

e JSR: joint sparse representation model.

e GJSR: group-and-joint sparse representation. This model is simplified from
GJSR+L model in which the low-rank interference term is set to be zero along

the optimization procedure.
e JSR+L: joint sparse representation with low-rank interference.

e GJSR+L: group-and-joint sparse representation with low-rank interference

model. This is the most general model among sparsity-based technique.
e DNN: deep neural network.

e DBN: deep belief network.

As mentioned previously, among the classification methods above, MSVAR, GMM,
HMM, SVM, and SVM-HMM have been previously studied for the acoustic tran-
sients data set. Furthermore, besides sparsity-based representation techniques, we
also develop and compare the classification results of SLR as well as 2 deep learning
models, arguably as among the most advanced discrimination techniques in recent

years.

Sparse logistic regression. The main idea of this model is to associate to all the
training data in the training dictionary D € R™*¥ an appropriate coefficient vector
a € RY, and the logistic loss is taken over the sum of training samples. Sparsity
regularization can be incorporated into the optimization to retrieve the coefficient
vectors a. This regularization implies that some features are assumed to be irrel-
evant for classification, thus they should be minimized via the ¢;-norm sparsity
constraint. In particular, the probabilistic model of the logistic regression?’ is for-
mulated as follows:

exp(d;‘rayj)

P(y;ld;) = Hex—p(djra)’ (19)
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where the feature vector d; is the j-th column vector of the training dictionary D,

and the index y; receiving values 0 or 1 indicates the class label.

To recover a’s, a maximum likelihood over all the training data is applied together

with imposing sparsity on a. In particular, the following function is minimized:

min £(a) + A [all, 20)

where the loss function £(a) is defined as

L(a) = Zyj(dj)Ta —) "log(1 + exp(d]a)). (21)

j=1
Once the coefficient vector a for each training sample is obtained, each measure-
ment of the test sample is then assigned to a class, and the final decision is made by

selecting the label that occurs most frequently.

Deep learning models. Recently, deep learning or deep networks have increas-
ingly attracted the interest of researchers in various diverse disciplines and have
been applied to many fields like computer vision, natural language processing, au-
tomatic speech recognition, and bioinformatics. Remarkably, deep-learning-based
techniques have been shown to produce state-of-the-art results on various discrim-
ination tasks.?®?° However, it has been argued that in order to perform well, these
techniques normally require a very large and diversified training data set. Experi-
ments with deep learning architectures are critical in helping us comprehensively

compare the classification performance with state-of-the-art techniques.

In this report, we develop 2 deep learning architectures, namely, deep neural net-
work (DNN) and deep belief network (DBN), to perform classification on the tran-
sient acoustic data set. A general deep network architecture is an artificial neural
network with a number of hidden layers between its inputs and its outputs (Fig. 4).
DNNs are feed-forward networks whose hidden layers can be hierarchically trained
by backpropagating derivatives of a cost function that measures the discrepancy be-
tween the target outputs and the actual outputs produced for each training case.*
On the other hand, DBNs can be formed by stacking multiple layers of restricted
Boltzmann machines (RBMs), which are trained in a greedy fashion,>'*? and the
results are fine-tuned using backpropagation. An RBM is a generative undirected

graphical model that learns connections between a layer of visible units (represent-
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ing stochastic binary input data) and a layer of stochastic binary hidden units with

the restriction that no visible-visible or hidden-hidden units are connected.
@ Output
AR
@ Hidden layer 2
Hidden layer 1
/

=

==
=

/
G(; Inputs

Fig. 4 A general deep network architecture.

4.3 Experimental Setups

4.3.1 Segmentation and Feature Extraction

To accurately perform classification, it is necessary to extract the actual events from
collected signals. A recorded signal can last several seconds. However, the event
occurs within a small interval, typically of half a second duration or less. After seg-

3

mentation, the cepstral features* are extracted in each segment. Cepstral features

have been proven to be very effective in speech recognition and acoustic signal clas-
sification. The power cepstrum of a signal y(t), formulated as | F~* (log, (| F'(y(t)) *)) ]2
where I is a Fourier transform,** captures the rate of signal change with time with
respect to a different frequency band. We discard the first cepstral coefficient (cor-
responding to the zero-frequency component) and use the next 50 coefficients for

classification.

4.3.2 Training and Testing Splits

We evaluated the performance of different training and testing splitting frameworks:

e Randomly splitting the whole data set into training and testing sets with an
equal amount of samples (i.e., half for training and half for testing). This is the

optimal setup when training samples of diversified battlefields are available.
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This means that the results of this setting should deliver the upper-bound
results in real-world practical applications. Most of the published experiments

so far have been evaluated on this half-half splitting setup.

e Splitting the training and testing sets by opposite vegetation environments.
This experimental setup consists of 2 different scenarios that perform clas-
sification from samples of V1 vegetation (i.e., desert vegetation) as training
and V2 vegetation (i.e., grassland vegetation) as testing and vice versa. These
are viewed as pessimistic setups (corresponding to lower-bound results) since
training and testing samples are completely nonoverlapped in date, time, lo-

cation, experiment field, and vegetation environment.

4.3.3 DataIlmbalance

As can be seen from Table 1, there is a severe class imbalance among the number
of samples in different projectiles. More specifically, the number of W1 samples
equals 89.4% of the total amount of available signatures while W2 and W3 sam-
ples account for only 4.8% and 5.8% of all signatures, respectively. This means that
there are at least 15 times more signatures available for W1 than for the other 2
weapons. Moreover, while the imbalance between data samples of the 2 actions,
launch and impact, is less serious compared with that of weapon types, the collec-
tion of launch actions is still almost twice that of the impact signatures. In total, the
number of signatures coming from the largest-sized class (i.e., W1-launch class) is

approximately 48 times more than the smallest counterpart (i.e., W2-impact class).

This imbalance property of the data set is a critical problem that influences the clas-
sification results of all methods since a test sample is more likely to be categorized
into majority classes which have more volume with high density and contain more
diversified information. Particularly, this problem seriously affects the results of
sparsity-based techniques because the class assignment steps of these methods are
decided by the coefficients vectors, which lack balance in sizes among data samples
in the training classes, hence their outputs are greatly asymmetric within different
classes. Therefore, for the 4 sparsity-based methods, we process a balancing step
to balance data samples in the training set to the median number of all class sizes.
This step includes shrinking the majority classes by randomly under-sampling to
the median size and expanding the minority classes by randomly over-sampling to

the same class size. This balancing strategy, despite generating over-fitting due to
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multiple tied instances in minority classes and loss of features in majority classes,
provides more equally distributed classification accuracy rates among classes on
sparsity-based methods. On the other hand, the data balancing may slightly vary
the performance of the other classification techniques but would not show system-
atic changes on the overall results. Therefore, in this report, all results generated by
sparsity-based models are performed with balancing training samples while those

of the other methods are reported with the full data set.

4.4 Comparison of Classification Performance

In this section, we perform extensive experimental results on the classification of

the transient acoustic data set for 2 main classification problems:

e Four-class problem to classify W1-launch, W1-impact, W2-launch, and W2-
impact

e Six-class problem to classify W1-launch, W1-impact, W2-launch, W2-impact,
W3-launch, and W3-impact

Note that a W3 munition is a special type of W2. Therefore, in the 4-class problem,
we combine the signatures of W2 and W3 weapon types and just consider them as

W2 while the 6-class problem further discriminates between W2 and W3 weapons.

4.4.1 Classification Results for 4-class Problem

Now we demonstrate the classification results for the 4-class classification prob-
lem, particularly in discriminating between the launches and impacts of W1 and
W2 projectiles. The detail confusion matrices of all competing methods for the 3
splitting setups—1) half-half, 2) V1 as training and V2 as testing, and 3) V2 as
training and V1 as testing—are visualized in Figs. 5-7, respectively. The heights of
all bars are normalized with respect to the actual number of testing samples in that
class (i.e., each row is normalized to have sum to unity). Furthermore, the black
number on the top of each bar shows the true number of samples that are classified
into the associated class while the red number displays the percentage of the num-
ber of predicted samples over the total number of testing samples in that class. The
results on the diagonal of each matrix (surrounded by rectangles drawn with solid
red lines) demonstrate accurate classification rates of the 4 classes. Also, the results
from the 4 sparsity-based techniques are surrounded by rectangles drawn with solid
blue lines.
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Figures 8 and 9 summarize the classification performance of all comparison meth-
ods for the 2 splitting setups: V1 as training and V2 as testing (Fig. 8) and V2 as
training and V1 as testing (Fig. 9). We report both weighted results in relation to the
actual class sizes and non-weighted results, which simply average the classification
rates of the 4 classes without taking into account the class sizes. In addition, the
results of each opposite-vegetation splitting setup, displayed in black percentage
numbers, are compared to those of the optimistic half for training and half for test-
ing setup, exhibited by red numbers. The classification rates of the half-half setting

consistently exceed those of the opposite-vegetation splits by around 10%.

EEMSVAR [SLR [JSVM []ISR []ISRL [EEDNN
EGVM  [HMM [JSHMM [JGJSR [EGJISRL [DBN

EEVSVAR [SLR [JSVM []JSR []JSRL [EEDNN
EGVM  [HMM [JSHMM []GJSR [ GJISRL [DBN

6319 6300 222

60,60 m——

52.01 52,12

s 00,27 i

(a) (b)
Fig. 8 Comparison of classification performance of 4-class problem with V1 as training and V2
as testing vs. half-half split of training and testing sets: a) weighted results and b) non-weighted
results

EEVSVAR [lSLR [JSVM []ISR []JSRL [EEDNN EEVSVAR [lSLR [JSVM []3SR []JISRL [EEDNN
EEGVM  [HVMM [T]SHMM [C]GJSR [EGJISRL [DBN EEGVM  [HVMM [TJSHMM []GJSR [GJISRL [EDBN

68,11 —L0:35 60,00 =Sl
6310 6300 0212

60,67 = —l

60.28

52,01 52,12
e 52.46 | 53.94 | 53.85

46.05
e

43.04
40.11 =2

(@) (b)
Fig. 9 Comparison of classification performance of 4-class problem with V2 as training and V1
as testing vs. half-half split of training and testing sets: a) weighted results and b) non-weighted
results

Both Figs. 8 and 9 show that sparsity-based techniques generally perform among
the best, in which the GJISR+L model always yields the best classification rates

for both weighted average and non-weighted average in all 3 splitting setups, il-
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lustrating the efficacy of its group-and-joint sparsity structure as well as low-rank
interference. On the other hand, deep network architectures provide rates similar to
traditional classification techniques and are surpassed by GJSR+L by more than 6%
in weighted results and 10% in non-weighted results. Among the 2 deep learning
methods, DBN is slightly superior to DNN in all cases. The main reasons for the
moderate results of these techniques are the limitation and nondiversity of the data
set as well as the harmful effects of noise and/or external interferences, such as the

presence of propagation effects in recorded signals.

4.4.2 Classification Results for 6-class Problem

In this section, we further compare the performance of the 12 competing classifica-
tion techniques on the 6-class problem which discriminates between 2 detonations
(launches and impacts) of 3 projectiles. The detail confusion matrices for the 3
training-testing splitting scenarios are exhibited in detail in Figs. 10—12, and their
weighted and non-weighted classification results are encapsulated in Figs. 13 and
14. We can again observe similar performance orders among classification tech-
niques in competition, in which GJSR+L and other sparsity-based models are su-
perior to conventional classifiers as well as the 2 deep network architectures. The
training data samples are even more limited than the 4-class problem case in some
classes. Specifically, no more than 25 training samples are available in the 4 classes
W2-launch, W2-impact, W3-launch, and W3-impact for the V2 as training and V1

as testing split, in which the W3-impact class only contains 9 training signatures.

In addition, we compare the classification rates of 4-class and 6-class problems in
Fig. 15, where the results are averaged over the 3 splitting setups. The black num-
bers display the classification rates in percentage resulted by 6-class problem set
while the red numbers display outputs of the 4-class case. The performance discrep-
ancies between the 2 problems are varied by methods but are typically small and
stay in the range of 2%-4%. This means that W3 signatures contain significantly
discriminative features with signals of other W2-weapon types, hence should be

categorized in a separated class.
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EEMSVAR [lSLR [JSVM []ISR []ISRL [EEDNN EEVSVAR [lSLR [JSVM []IJSR []JSRL [EEDNN
EEGVMM  [HMM [T]SHMM [JGJSR [EGJISRL [EDBN EEGVM  [HVMM [T]SHMM []GJSR [EGJSRL [DBN
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Fig. 13 Comparison of classnﬁcation performance of 6-class problem Wlth V1 as training and
V2 as testing vs. half-half split of training and testing sets: a) weighted results and b) non-
weighted results

EEMSVAR [ISLR [JSVM []ISR [C]ISRL [EEDNN EEVSVAR [lSLR [ISVM []3SR []JSRL [EEDNN
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(a)
Fig. 14 Comparison of classification performance of 6-class problem Wlth V2 as training and
V1 as testing vs. half-half split of training and testing sets: a) weighted results and b) non-

weighted results

EEVSVAR [ISLR [JSVM [JJSR []JSRL [EEDNN Bl VSVAR [lISLR [T]SVM [JJSR []JSRL [EDNN
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Fig. 15 Comparison of classiﬁcation results of 4-class problem vs. 6-class problem: a) non-
weighted results and b) weighted results

4.5 Discussions on Classification Strengths and Weaknesses.

Section 4.3.3 has provided a comprehensive comparison on the performance of the
12 classification methods. In this section, we will discuss general strengths and
weaknesses of the classifiers under examination, focusing on both performance and
complexity. From the performance perspective, the results from the previous section

demonstrate the superior performance of sparsity-based models. On the negative
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side, however, these methods are expensive in both training and testing procedures.

Furthermore, the results are highly dependent on the weighting parameters, such as

Az, and A\g, which encode low-rank and group-structure information.

Table 2 summarizes the advantages and disadvantages in terms of complexity and

classification accuracy of the 12 classification methods. This does not compare

methodology in general; instead, the classifiers are only evaluated based on their

specific performance on the transient acoustic data set.

Table 2 Advantages and disadvantages of the competing methods

Methods H Strengths Weaknesses Other comments
MSVAR Quite low computa- | Requires multiple pre- | MSVAR was previously studied and
tional time for testing. | defined parameters of | is a good reference for performance
transition stages. comparison.

GMM (1) Simple and easy | Requires predefin- | GMM is a simple model that can
to implement; (ii) low | ing the number of | yield generally good results.
computation and small | mixtures of the model.
memory allocation.

SLR Training time is gener- | Classification  accu- | This method is moderate in both per-

ally fast. racy is quite low. formance and computation.

SVM Supporting  kernels, | Expensive in both | This is a typical deterministic, dis-
hence can model | training/testing time | criminative model.
nonlinear relations. and memory usage.

HMM Low complexity in | Requires predefin- | This is a typical generative, proba-
both running time and | ing the number of | bilistic model.
memory usage. stages and number of

mixtures in each state.

SVM- (i) Good classification | Long training time. Performance is second best after

HMM performance; (ii) test- sparsity-based methods while re-
ing time is generally quiring much less computational
fast. time.

Sparsity- || (i) Highest clas- | (i) Very long test- | The 4 sparsity-based methods pro-
based sification perfor- | ing time; (ii) results | vide slight variance on classification
methods mance among com- | are dependent on | results and computational complex-
peting methods; | parameter selection; | ity, in which JSR has lowest classifi-
(ii) robust with | (iii) require extensive | cation rates but is least dependent on
noise/interference; cross-validation com- | parameter selections while GISR+L
(iii)) low memory | putation for parameter | performs the best but is most depen-

allocation for testing. learning. dent on parameter selections.

Deep Fast testing time. (i) Long training | Deep learning methods do not per-
Network procedure; (ii) require | form very well on the available data
Architec- large training set. set. However, the performance may

tures significantly improve if many more

training samples are available.
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Furthermore, we demonstrate the computational complexity of the 12 methods, test-
ing for the 4-class problem and half-half split in Table 3. In particular, Table 3
exhibits the running time in milliseconds and the maximum memory allocation in
kilobytes calculated specifically for the classification functions of one testing sam-
ple. All the calculations are conducted and timed on the same desktop with an Intel
quad-core 3.60-GHz CPU that has 16-GB memory, running Windows 7 and Matlab
version 8.3.0. Note that these running times would depend on the parameters chosen
(e.g., number of states, correlation order). A detailed study of speed for each algo-
rithm is outside the scope of this report. In addition, it might not provide the final
word in the context of continuing hardware progress. It is also worth mentioning
that these numbers are for the testing side after data training and parameter learning
have already been processed. Moreover, while the training complexity is difficult to

quantify, its general analysis has been provided in Table 2.

Table 3 Computational complexity and memory usage comparison

Methods Running time per testing Maximum memory
sample (ms) allocation (KBs)

MSVAR 18.2 29,742
GMM 94 5,566

SLR 55.4 128,262
HMM 5.2 11,506

SVM 181.2 220,386

SVM-HMM 20.7 116,714
JSR 938 2,096
GJSR 1,062 2,122
JSR+L 1,286 2,138
GJSR+L 1,308 2,264
DNN 0.7 4,838
DBN 0.6 6,972

5. Conclusions and Future Work

In this technical report, we have proposed a general sparsity-based framework for
the classification of transient acoustic signals; this framework enforces various spar-
sity structures like joint-sparse or group-and-joint-sparse within measurements of
multiple acoustic sensors. We further robustify our models to deal with the pres-
ence of dense and large but correlated noise and signal interference (i.e., low-rank

interference). Another contribution is the implementation of deep learning archi-
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tectures to classify the transient acoustic data set. Extensive experimental results
are included in the report to compare the classification performance of sparsity-
based and deep-network-based techniques with conventional classifiers, such as
MSVAR, GMM, SVM, HMM, SLR, and the combined HMM-SVM methods for
2 experimental sets of 4-class and 6-class classification problems. Based on rela-
tive performance and overall computational requirements, we would pick the JSR
as a stop-gap solution. Its performance is among the leading pack while its training
and testing time is moderate. However, the reality is that all classifiers drop around
10% in accuracy when tested on unseen environments. This is clearly a fundamental

problem that is still open. Much work remains to be done, as is discussed next.

In the future, we plan to work on 1) searching for invariant features in the z-domain;
2) developing a collaborative multi-array multi-sensor classification framework,
which takes into consideration the correlations as well as complementary infor-
mation among data samples of a single event recorded by multiple sensor arrays
at different locations; 3) learning dictionary instead of using an off-the-shelf dictio-
nary to improve discrimination characteristics; 4) using online/on-the-fly dictionary
update; and 5) studying unsupervised transfer learning methods to exploit available
information from unlabeled data samples and thus further improve classification re-
sults. The detailed approaches are presented in Subsections 5.1-5.5. Furthermore,
some other tasks under our future investigations include 6) re-running experiments
on the full and clean data set; 7) developing more robust deep network methods; 8)
learning about other invariant feature spaces, such as the symbolic dynamic filtering
features® that can effectively encapsulate time-series information; and 9) publish-

ing results in journals and/or present at conferences in acoustics fields.

5.1 Invariant Features Search in the Z-Domain

A fundamental obstacle to long-range classification is the effect of the propagation
channel on the acoustic signal. Under the linear regime, it is reasonable to assume
that the channel is linear time-invariant. We can further assume that the signals
themselves, after propagating far enough from the point of explosion, are small
enough to be in the linear regime and can be modeled by a linear time-invariant

system.
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Under these assumptions, the measurements can be modeled in the z-domain as

X() = HoME) + N - rdm 2= 0 Iha 22

n
j=1% " Tj Hj:l Z—=DPj

+ N(z), (22)

where H (z) is the channel, M (z) is the signal of interest, and /N (z) is the additive

noise. y; and 7; are the zeros and poles of H(z), and z; and p; are the zeros and
poles of M (z).

Clearly, the “natural” invariant features are the poles and zeros of M(z), as any
H(z) will leave them unchanged, as long as there is no pole zero cancellation. To
find them, one will need to remove the poles/zeros of H(z) and N (z), effectively,
to factor out channel and signal. The answer is not obvious if one only measures
X (z). However, it is conceivable to use past noise measurements and multiple mea-

surements of the same signal to estimate M (z).

A simple approach is to estimate all the poles and zeros of X (z) and compare the
pole-zero pattern to known ones, using the known patterns as templates. There are
many robust approaches to solving for the poles and zeros of X (z). One can use
the state-space realization from noisy impulse response.® Another option is to use
the system identification approach. We have already implemented and tested the
first approach. However, to keep the focus, we will report our preliminary results in

another paper.

If accurate, a practical by-product is a pole-zero pattern that can be displayed to
human operators, who could then use their own judgment to do the classification.

The challenge with this approach is the order selection and unstable realization.

5.2 Collaborative Multi-array Multi-sensor Classification

In this report, we have theoretically and empirically demonstrated the effectiveness
of incorporating correlation across different sensors attached to the same sensor
array. In practice, multiple sensor arrays are stationed at different locations, concur-
rently listening to detonation events; hence, this information can be accommodated
to further improve classification performance. In other words, we exploit not only
correlation among sensors of the same array, but also complementary information
across different sensor arrays. Mathematically, suppose there are /K sensor arrays

in the system, Y'* is the corresponding measurement matrix collected by the k-th
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array (k = 1,2,...,K),and Y = [Y!' Y2 .. Y¥] is the concatenated matrix of
all sensors and arrays. The GJSR+L model can then be extended to fuse multiple

arrays for a collaborative classification as follow:

K K C
min 3 A%, + A6 2 D (1ALl + Ac 2],
’ k=1 7 k=1 c=1 (23)
st. Y=DA+L,
or equivalently

K C
min > [[A",, +Ae D IAdlp + Ac LI,
, k=1 c=1

st. Y=DALL,

(24)

where A = [A;; As; ...; Ac] is the row-concatenated coefficient matrix of different
classes, A = [A!, A% ..., AX] is the column-concatenated coefficient matrices of
K sensor arrays, and A’j is the coefficient submatrix associated with class ¢ and
array k. The minimization of the first component in Eq. 24 can be phrased as en-
forcing the row-sparsity property within each sensor array while different arrays
do not necessarily share common sparsity patterns. On the other hand, the group-
sparsity function (i.e., the second term in Eq. 24) promotes a group structure within
each array as well as across multiple arrays. Finally, a nuclear norm minimization
is devoted to L to encourage low-rank property on the interference among all mea-

surements.

5.3 Dictionary Learning for Sparse Coding on Acoustic Signals

The sparsity-based techniques proposed in this report have been based on the as-
sumption that acoustic signatures usually lie in low-dimensional subspaces of a de-
terministic dictionary, which is constructed by directly concatenating the acquired
training samples. However, it is probable that learning the dictionary instead of us-
ing off-the-shelf training samples will improve classification performance. It means
that a learning procedure will be added to the training side where not only a spar-
sity constraint is enforced on the coefficient matrix, but also a dictionary is learned
in parallel to increase the sparsity characteristic and better capture the discrimi-
nation property. This learned dictionary will then be used for the classification
of testing samples instead of a deterministic dictionary. Given the training data
Y = [y1,92, ...,Yum]|, @ general dictionary learning (DL) method is designed to si-
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multaneously learn a dictionary D and the corresponding sparse coefficients A as
follows>” .
. 2
win > [V — DA + A4, (25)

The nonconvex optimization problem in Eq. 25 is usually solved by iterating be-
tween sparse coding and dictionary updating. In the sparse coding stage, the sparse
coefficient A is found with respect to a fixed dictionary D. In the dictionary updat-
ing stage, each dictionary atom d; in D is updated using only data with nonzero
sparse coefficients on index j. This subproblem can be solved by either block co-
ordinate descent®” or singular value decomposition.*® Furthermore, we propose to
design the dictionary and sparse code with more discriminating properties by en-

forcing extra structural constraints f4(-) and fp(-), leading to

1
min Y — DA|% + Aafa(A) + Apfp(D), (26)

where the structural-sparsity promoting function f4(-) enforces the correlation along
multiple measurements, which can be element-wise-sparse, joint-sparse, or group-
sparse functions as previously discussed in this report; and fp(-) forces the subdic-
tionaries of different classes to be as incoherent as possible.*® For simplicity, the
presence of low-rank interference as well as the incorporation of multiple sensor

arrays are omitted from the model description in Eq. 26.

5.4 Online Dictionary Learning Update

In the long run, it is desired to develop a system that can automatically update
the dictionary with more and more training samples continuously collected on the
battlefields (both labeled and unlabeled). For the sparsity models with deterministic
dictionaries, the dictionary update procedure typically includes 2 steps: the first step
selectively adds dictionary atoms collected on the fields and labels them to the cor-
responding classes, and the second step involves relearning the models’ parameters
via cross-validation technique. This normally requires very high computations, es-
pecially when the training set is large and thus is impractical to process in real time.
Therefore, we propose a dynamic dictionary updating framework based on a DL

approach that can capture the representation and the label of the signal on-the-fly.

Researchers have proposed to update online dictionaries by block-coordinate de-

41

scent methods with warm restarts,*® recursive least squares,” or an efficient feed-

forward architecture.*> Another related line of research is learning algorithms on
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manifolds for independent component analysis. Researchers have developed effi-
cient conjugate gradient or steepest descent algorithms leveraging differential ge-
ometry techniques.* Our proposed online dictionary update may include several
approaches to remove the outdated dictionary atoms in a chosen subdictionary or
add new dictionary atoms to capture more on-the-fly features. First, a linear dy-
namic system (LDS) model describing the signal evolution can be used to capture
the transformation of the dictionary. This quadratic problem can be formulated as

follows:

o1
HBIH §||Yt — DtAtH%‘ + ’YHDt - BtthlH%" + )\DfD(D)a (27)

where D, is the updated dictionary at time ¢, B, is used to capture the subspace
deformation, and 7 is a trade-off weighting parameter to balance the 2 terms. Here
we only change the dictionary updating stage in the DL model in Eq. 26 while the

sparse coding stage remains unchanged as described in Section 5.

Another approach is to update the dictionary by descent on the oblique manifold.**
The oblique manifold is the set of vectors with unit Frobenious norm, which is
exactly the constraint typically enforced on DL. We propose to employ the gradient
on the oblique manifold to dynamically update the dictionary, where the gradient

can be derived as

V(D) = P(f/ (Dy)) = f/(Dt) — D, ddiag(D?f,(Dt)). (28)

Here, P(-) captures the orthogonal projection onto the tangent space of the dictio-
nary manifold, f(-) represents the loss function, and ddiag(-) sets all off-diagonal
entries of a matrix to zero. Notice that in our problem setup, the structure usually
indicates the boundary of subspaces with different labels. Therefore, we will fur-
ther incorporate this information into the dictionary update procedure to improve

performance.

5.5 Unsupervised Transfer Learning

One more approach that we plan to investigate in the future is the unsupervised
transfer learning that deals with the problem of automatically labeling newly col-
lected signals, then using them as new training samples for the classification of
acoustic signals.*>*¢ This is a critical problem since, in practice, many more acous-

tic samples can be collected in the field but only a small subset of those can be
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manually labeled. The question is how to make use of these unlabeled samples to
further improve classification performance. This motivates us to study the unsu-
pervised transfer learning that takes into account the prior knowledge of labeled
training examples (source tasks) in a transformed domain to develop a hypothesis
for the set of unlabeled samples (target tasks)—that is, probabilistically assigning
every unlabeled sample to a specific class. This can be done by using a transforma-
tion matrix to transfer both the source and target data onto a common subspace in
which each target datum can be linearly reconstructed by the data from the source

domain. This problem can be formulated as
min [TYy — TY LA|7. (29)

where Y and Y, are the corresponding labeled (source) and unlabeled (target)
measurement matrices; T' is the linear transformation, and A is the coefficient ma-
trix that linearly represents target tasks by the source tasks in the common sub-
space. Furthermore, the reconstruction coefficient matrix A should have a block-
wise structure that promotes both low-rank and sparsity properties on A. Therefore,
the unsupervised transfer learning for classification can be recast as the following

optimization:

%1% ITY s — TY A% + M Al + Az AL (30)
The low-rank constraint penalized by the nuclear norm ||A||, encourages the data
correlation among samples of the same classes while the sparsity constraint ||A||,
is helpful to preserve the data local structure such that each target sample can be
well reconstructed by only a few samples from the source domain. The benefits
of solving the transfer learning problem (Eq. 30) are 2-fold. First, it efficiently ex-
ploits information on the unlabeled signatures and can thus automatically update
the dictionary on the battlefield. Second, by transfer learning, we can enforce the
consistency of source and target samples in the transferred domain even when there
are uncommon features (such as propagation effects, signal interferences, or veg-
etation) between the 2 sets. This may eventually lead to a possible answer to the
invariant feature search problem for transient acoustic signals, which still remains

unsolved.
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List of Symbols, Abbreviations, and Acronyms

ADMM

ARL

DBN

DL

DNN

GJSR

GJSR+L

GMM

HMM

JSR

MSVAR

RBM

SLR

SVM

alternating direction method of multipliers
US Army Research Laboratory

deep belief network

dictionary learning

deep neural network

group-and-joint sparse representation
group-and-joint sparse representation with low-rank interference
Gaussian mixture model

hidden Markov model

joint sparse representation

Markov switching vector auto-regression
restricted Boltzmann machine

sparse logistic regression

support vector machine
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